15 research outputs found

    Arquitectura para la medida del Tip Clearance y el Time of Arrival en motores aeronáuticos

    Get PDF
    165 p.Esta tesis propone una arquitectura para la medición de dos parámetros que caracterizan elfuncionamiento de un motor aeronáutico: el Tip Clearance y el Time of Arrival. El primero representa ladistancia desde la punta de álabe a la carcasa del motor. El segundo representa el instante en que el álabepasa frente al sensor. Ambos parámetros son el punto de partida para realizar un análisis del estado devibración que sufre ese motor.La arquitectura propuesta para le medida del Tip Clearance y del Time of Arrival consigue podermonitorizar cada álabe de forma individual realizando las medidas en tiempo real. La arquitectura sepuede adaptar a las formas de onda de diversos sensores de los que se emplean habitualmente en estecampo. También permite configurar diversos aspectos de la medida o del ensayo. La arquitectura esescalable y establece un medio de sincronización que permite que se puedan medir simultáneamentevarios sensores instalados en diferentes puntos de la carcasa de motor.La validación de la arquitectura se ha realizado con las formas de onda de un sensor óptico trifurcadoprobado en ensayos reales de una etapa compresora en un túnel de viento. En la implementación se hanpropuesto algoritmos para la determinación de los dos parámetros que se adaptan al procesadoconcurrente y secuencial de una FPGA

    Arquitectura para la medida del Tip Clearance y el Time of Arrival en motores aeronáuticos

    Get PDF
    165 p.Esta tesis propone una arquitectura para la medición de dos parámetros que caracterizan elfuncionamiento de un motor aeronáutico: el Tip Clearance y el Time of Arrival. El primero representa ladistancia desde la punta de álabe a la carcasa del motor. El segundo representa el instante en que el álabepasa frente al sensor. Ambos parámetros son el punto de partida para realizar un análisis del estado devibración que sufre ese motor.La arquitectura propuesta para le medida del Tip Clearance y del Time of Arrival consigue podermonitorizar cada álabe de forma individual realizando las medidas en tiempo real. La arquitectura sepuede adaptar a las formas de onda de diversos sensores de los que se emplean habitualmente en estecampo. También permite configurar diversos aspectos de la medida o del ensayo. La arquitectura esescalable y establece un medio de sincronización que permite que se puedan medir simultáneamentevarios sensores instalados en diferentes puntos de la carcasa de motor.La validación de la arquitectura se ha realizado con las formas de onda de un sensor óptico trifurcadoprobado en ensayos reales de una etapa compresora en un túnel de viento. En la implementación se hanpropuesto algoritmos para la determinación de los dos parámetros que se adaptan al procesadoconcurrente y secuencial de una FPGA

    Building IoT Applications with Raspberry Pi and Low Power IQRF Communication Modules

    Get PDF
    Typical Internet of Things (IoT) applications involve collecting information automatically from diverse geographically-distributed smart sensors and concentrating the information into more powerful computers. The Raspberry Pi platform has become a very interesting choice for IoT applications for several reasons: (1) good computing power/cost ratio; (2) high availability; it has become a de facto hardware standard; and (3) ease of use; it is based on operating systems with a big community of users. In IoT applications, data are frequently carried by means of wireless sensor networks in which energy consumption is a key issue. Energy consumption is especially relevant for smart sensors that are scattered over wide geographical areas and may need to work unattended on batteries for long intervals of time. In this scenario, it is convenient to ease the construction of IoT applications while keeping energy consumption to a minimum at the sensors. This work proposes a possible gateway implementation with specific technologies. It solves the following research question: how to build gateways for IoT applications with Raspberry Pi and low power IQRF communication modules. The following contributions are presented: (1) one architecture for IoT gateways that integrates data from sensor nodes into a higher level application based on low-cost/low-energy technologies; (2) bindings in Java and C that ease the construction of IoT applications; (3) an empirical model that describes the consumption of the communications at the nodes (smart sensors) and allows scaling their batteries; and (4) validation of the proposed energy model at the battery-operated nodes.This work was supported in part by the University of the Basque Country (UPV/EHU) under projects EHU13/42 and UFI11/28 and by the Basque Government (GV/EJ) under projects CPS4PSS ETORTEK14/10 and Thinking Factory ETORGAI14

    An Architecture for On-Line Measurement of the Tip Clearance and Time of Arrival of a Bladed Disk of an Aircraft Engine

    Get PDF
    Safety and performance of the turbo-engine in an aircraft is directly affected by the health of its blades. In recent years, several improvements to the sensors have taken place to monitor the blades in a non-intrusive way. The parameters that are usually measured are the distance between the blade tip and the casing, and the passing time at a given point. Simultaneously, several techniques have been developed that allow for the inferencefrom those parameters and under certain conditionsof the amplitude and frequency of the blade vibration. These measurements are carried out on engines set on a rig, before being installed in an airplane. In order to incorporate these methods during the regular operation of the engine, signal processing that allows for the monitoring of those parameters at all times should be developed. This article introduces an architecture, based on a trifurcated optic sensor and a hardware processor, that fulfills this need. The proposed architecture is scalable and allows several sensors to be simultaneously monitored at different points around a bladed disk. Furthermore, the results obtained by the electronic system will be compared with the results obtained by the validation of the optic sensor.Safety and performance of the turbo-engine in an aircraft is directly affected by the health of its blades. In recent years, several improvements to the sensors have taken place to monitor the blades in a non-intrusive way. The parameters that are usually measured are the distance between the blade tip and the casing, and the passing time at a given point. Simultaneously, several techniques have been developed that allow for the inferencefrom those parameters and under certain conditionsof the amplitude and frequency of the blade vibration. These measurements are carried out on engines set on a rig, before being installed in an airplane. In order to incorporate these methods during the regular operation of the engine, signal processing that allows for the monitoring of those parameters at all times should be developed. This article introduces an architecture, based on a trifurcated optic sensor and a hardware processor, that fulfills this need. The proposed architecture is scalable and allows several sensors to be simultaneously monitored at different points around a bladed disk. Furthermore, the results obtained by the electronic system will be compared with the results obtained by the validation of the optic sensor.This work has been funded in part by the Fondo Europeo de Desarrollo Regional (FEDER); by the Ministerio de Economia y Competitividad under project TEC2015-638263-C03-1-R; by the Gobierno Vasco/Eusko Jaurlaritza under projects IT933-16 and ELKARTEK (KK-2016/0030, KK-2017/00033, KK-2017/00089 and KK-2016/0059)

    Methodology for Detecting Progressive Damage in Structures Using Ultrasound-Guided Waves

    Get PDF
    Damage detection in structural health monitoring of metallic or composite structures depends on several factors, including the sensor technology and the type of defect that is under the spotlight. Commercial devices generally used to obtain these data neither allow for their installation on board nor permit their scalability when several structures or sensors need to be monitored. This paper introduces self-developed equipment designed to create ultrasonic guided waves and a methodology for the detection of progressive damage, such as corrosion damage in aircraft structures, i.e., algorithms for monitoring such damage. To create slowly changing conditions, aluminum- and carbon-reinforced polymer plates were placed together with seawater to speed up the corrosion process. The setup was completed by an array of 10 piezoelectric transducers driven and sensed by a structural health monitoring ultrasonic system, which generated 100 waveforms per test. The hardware was able to pre-process the raw acquisition to minimize the transmitted data. The experiment was conducted over eight weeks. Three different processing stages were followed to extract information on the degree of corrosion: hardware algorithm, pattern matching, and pattern recognition. The proposed methodology allows for the detection of trends in the progressive degradation of structures.This work was partially supported by Aernnova

    Reliable Control Applications with Wireless Communication Technologies: Application to Robotic Systems

    Get PDF
    The nature of wireless propagation may reduce the QoS of the applications, such that some packages can be delayed or lost. For this reason, the design of wireless control applications must be faced in a holistic way to avoid degrading the performance of the control algorithms. This paper is aimed at improving the reliability of wireless control applications in the event of communication degradation or temporary loss at the wireless links. Two controller levels are used: sophisticated algorithms providing better performance are executed in a central node, whereas local independent controllers, implemented as back-up controllers, are executed next to the process in case of QoS degradation. This work presents a reliable strategy for switching between central and local controllers avoiding that plants may become uncontrolled. For validation purposes, the presented approach was used to control a planar robot. A Fuzzy Logic control algorithm was implemented as a main controller at a high performance computing platform. A back-up controller was implemented on an edge device. This approach avoids the robot becoming uncontrolled in case of communication failure. Although a planar robot was chosen in this work, the presented approach may be extended to other processes. XBee 900 MHz communication technology was selected for control tasks, leaving the 2.4 GHz band for integration with cloud services. Several experiments are presented to analyze the behavior of the control application under different circumstances. The results proved that our approach allows the use of wireless communications, even in critical control applications.This research was funded by the Basque Government through the project EKOHEGAZ (ELKARTEK KK-2021/00092), by Diputación Foral de Álava (DFA) through the project CONAVANTER, and by UPV/EHU through the project GIU20/063

    Ultrasound-based structural health monitoring methodology employing active and passive techniques

    Get PDF
    Currently, structures are examined during manufacturing by means of Non Destructive Tests (NDT), but there is an increasing interest in monitoring its integrity over its whole life cycle by using Structural Health Monitoring (SHM) strategies. The monitoring of aircraft structures is particularly important as they suffer high strain under extreme atmospheric conditions. There is an extensive literature on SHM for aviation available but there are few references on comprehensive methodologies. This article introduces a methodology, a device and the tests used in its validation. The electronic prototype for structural health monitoring applies ultrasound techniques by means of piezoelectric transducers. It is lightweight, has USB 2.0 connectivity and includes data pre-processing algorithms to improve its performance. It can run in pitch-catch and pulse-echo modes employing passive and active techniques. Passive techniques are used to detect impacts or fiber breakage in composite materials. Tests based on active techniques can bring to light several types of damages such as those caused abruptly or those produced progressively by corrosion, delamination or fatigue

    Design and Performance of a XBee 900 MHz Acquisition System Aimed at Industrial Applications

    Get PDF
    Wireless technologies are being introduced in industrial applications since they provide certain benefits, such as the flexibility to modify the layout of the nodes, improving connectivity with monitoring and decision nodes, adapting to mobile devices and reducing or eliminating cabling. However, companies are still reluctant to use them in time-critical applications, and consequently, more research is needed in order to be massively deployed in industrial environments. This paper goes in this direction by presenting a novel wireless acquisition system aimed at industrial applications. This system embeds a low-cost technology, such as XBee, not frequently considered for deterministic applications, for deploying industrial applications that must fulfill certain QoS requirements. The use of XBee 900 MHz modules allows for the use of the 2.4 GHz band for other purposes, such as connecting to cloud services, without causing interferences with critical applications. The system implements a time-slotted media access (TDMA) approach with a timely transmission scheduling of the messages on top of the XBee 900 MHz technology. The paper discusses the details of the acquisition system, including the topology, the nodes involved, the so-called coordinator node and smart measuring nodes, and the design of the frames. Smart measuring nodes are implemented by an original PCB which were specifically designed and manufactured. This board eases the connection of the sensors to the acquisition system. Experimental tests were carried out to validate the presented wireless acquisition system. Its applicability is shown in an industrial scenario for monitoring the positioning of an aeronautical reconfigurable tooling prototype. Both wired and wireless technologies were used to compare the variables monitored. The results proved that the followed approach may be an alternative for monitoring big machinery in indoor industrial environments, becoming especially suitable for acquiring values from sensors located in mobile parts or difficult-to-reach places.This research was funded by the Basque Government, through the project EKOHEGAZ (ELKARTEK KK-2021/00092), Diputación Foral de Álava (DFA) through the project CONAVANTER, and to the UPV/EHU through the project GIU20/063

    Scalable IoT Architecture for Monitoring IEQ Conditions in Public and Private Buildings

    Get PDF
    This paper presents a scalable IoT architecture based on the edge–fog–cloud paradigm for monitoring the Indoor Environmental Quality (IEQ) parameters in public buildings. Nowadays, IEQ monitoring systems are becoming important for several reasons: (1) to ensure that temperature and humidity conditions are adequate, improving the comfort and productivity of the occupants; (2) to introduce actions to reduce energy consumption, contributing to achieving the Sustainable Development Goals (SDG); and (3) to guarantee the quality of the air—a key concern due to the COVID-19 worldwide pandemic. Two kinds of nodes compose the proposed architecture; these are the so-called: (1) smart IEQ sensor nodes, responsible for acquiring indoor environmental measures locally, and (2) the IEQ concentrators, responsible for collecting the data from smart sensor nodes distributed along the facilities. The IEQ concentrators are also responsible for configuring the acquisition system locally, logging the acquired local data, analyzing the information, and connecting to cloud applications. The presented architecture has been designed using low-cost open-source hardware and software—specifically, single board computers and microcontrollers such as Raspberry Pis and Arduino boards. WiFi and TCP/IP communication technologies were selected, since they are typically available in corporative buildings, benefiting from already available communication infrastructures. The application layer was implemented with MQTT. A prototype was built and deployed at the Faculty of Engineering of Vitoria-Gasteiz, University of the Basque Country (UPV/EHU), using the existing network infrastructure. This prototype allowed for collecting data within different academic scenarios. Finally, a smart sensor node was designed including low-cost sensors to measure temperature, humidity, eCO2, and VOC.The authors wish to express their gratitude, for supporting this work, to the Fundación Vital through project VITAL21/05 and the University of the Basque Country (UPV/EHU), through the Campus Bizia Lab (CBL) program. Partial support has been also received from the Basque Government, through project EKOHEGAZ (ELKARTEK KK-2021/00092), the Diputación Foral de Álava (DFA) through the project CONAVANTER, and the UPV/EHU through the GIU20/063 grant

    Odiel River (SW Spain), a Singular Scenario Affected by Acid Mine Drainage (AMD): Graphical and Statistical Models to Assess Diatoms and Water Hydrogeochemistry Interactions

    Get PDF
    The Odiel River (SW Spain) is one of the most cited rivers in the scientific literature due to its high pollution degree, generated by more than 80 sulphide mines’ (mostly unrestored) contamination in the Iberian Pyritic Belt (IPB), that have been exploited for more than 5000 years. Along the river and its tributaries, the physico-chemical parameters and diatoms, from 15 sampling points, were analyzed in the laboratory. Physico-chemical parameters, water chemical analysis, together with richness and Shannon–Wiener indexes were integrated in a matrix. An initial graphical treatment allowed the definition and proposal of a functioning system model, as well as the establishment of cause–effect relationships between pollution and its effects on biota. Then, the proposed model was statistically validated by factor analysis. For acidic pH waters, high values of Eh, TDS, sulphate, ∑REE and ∑Ficklin were found, while diatomologic indicators took low values. Thus, factor analysis was a very effective tool for graphical treatment validation as well as for pollution–biota interaction models’ formulation, governed by two factors: AMD processes and water balance suffered by the studied river. As a novelty, the cause–effect relationships between high barium concentration and low diversity and richness were demonstrated in the IPB, for the first time: The authors are grateful to the Departments of Biology and Geosciences of the University of Aveiro, Portugal where diatom samples were identified. The authors are grateful to the Sustainable Mining Engineering Research Group, Department of Mining, Mechanic, Energetic and Construction Engineering at the Higher Technical School of Engineering, University of Huelva, Spain for paying for the water analyses. AT Luís is funded by national funds (OE), through FCT—Fundação para a Ciência e a Tecnologia, I.P., in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of 29 August, changed by Law 57/2017, of 19 Jul
    corecore